

Improving Outcomes Through Applying Safety Science

America Outdoors Annual Conference, Nov 29-Dec 2, 2022 : Part I of II

Jeff Baierlein, Director, Viristar

viristar.com viristar.com/ao-safety-science

Viristar Risk Management Services

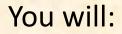
Outline of Session

Introductions

Presentation: application to outdoor programs

Presentation: safety science

Self-assessment


Discussion

Closure

Outcomes

Understand risk management theories and models used across industries

Identify which models are most widely accepted as current best practice

VIRISTAR

Identify which model or models may be most useful for your context

Understand the extent to which your current risk management structure reflects best practice

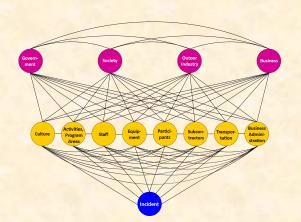
Understand where to go to learn more about risk management for outdoor programs

Principal Concepts

Sovt Policy & Budgeting Regulatory Bodies and Associations

Company

Physical Process & Actor Activit


Regulators Association

models

VIRISTAR

Current models employ complex socio-technical systems theory

Many models of how to

manage risk exist

The Risk Domains Model is one current model

It's important to use current

The Risk Domains model can be applied to outdoor programs via resilience engineering & other techniques

Basic Concepts

Risk: the possibility of undesirable loss.

Risk Management: the process of maintaining risk at a socially acceptably level.

Four ways to manage risk:

Eliminate

Reduce

Transfer

Accept

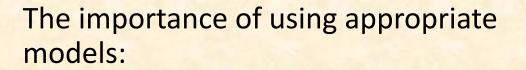
Avoid certain activities, locations, conditions

Institute sound safety practices

Pass risk to insurers, contractors, participants

Acknowledge some risk as unavoidable

No running Class VI rapids Helmets & PFDs required


Liability waivers

Inherent risk

Safety Science

Risk Management Models

- Your risk management system is based on theoretical models.
- Some models are now considered obsolete.
- You have a duty to use the current best thinking in risk management
- You may be held to that standard if an incident occurs.

Evolution in Safety Thinking

	Age of human factors	Age of safety management	Age of systems thinking
Age of technology			
1800s	1970s	1980s	1990s
Technology	Human Factors	Safety	Systems Thinking
Humans as cogs in an industrial machine	Humans as hazards to be controlled	Management Adapting dynamically to risk environment	Complex socio- technical systems
Domino Model, Root Cause Analysis	Rules-based safety	Integrated safety culture	Resilience engineering

Adapted from: Defining the methodological challenges and opportunities for an effective science of sociotechnical systems and safety, Waterson et al., Ergonomics, 2015, Vol. 58, No. 4

Evolution in Safety Thinking

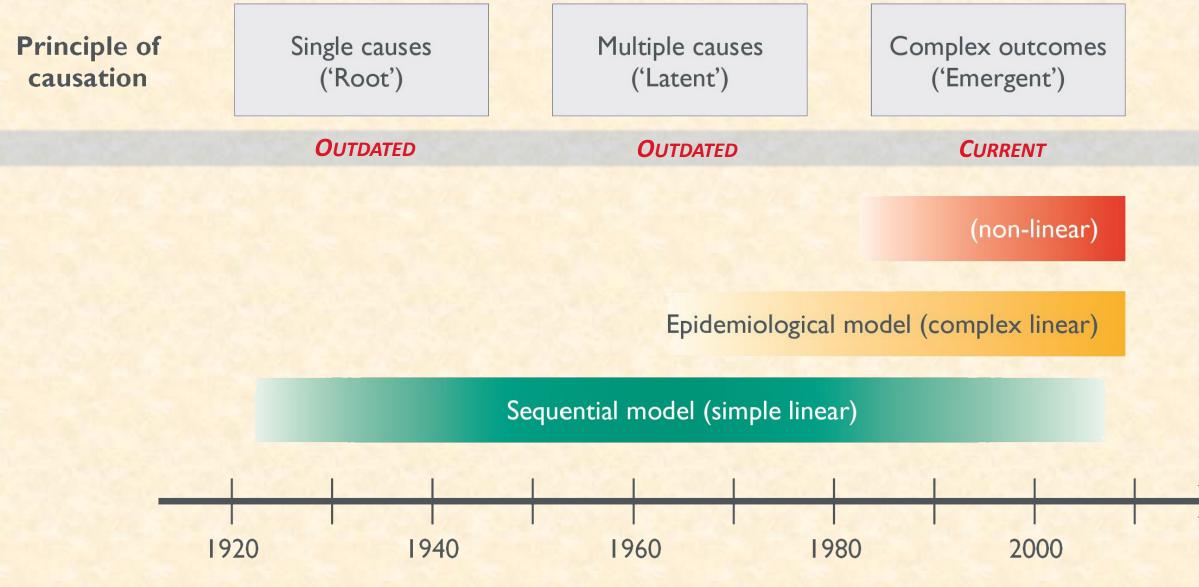
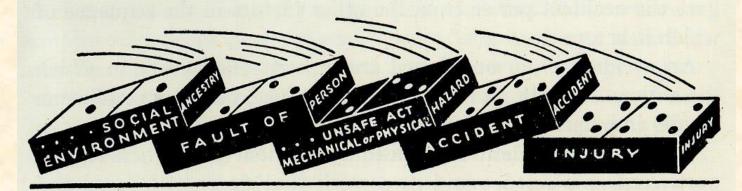
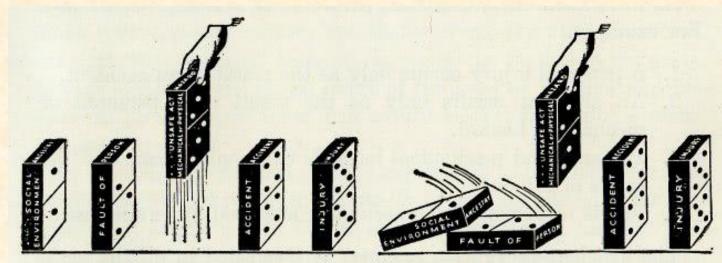



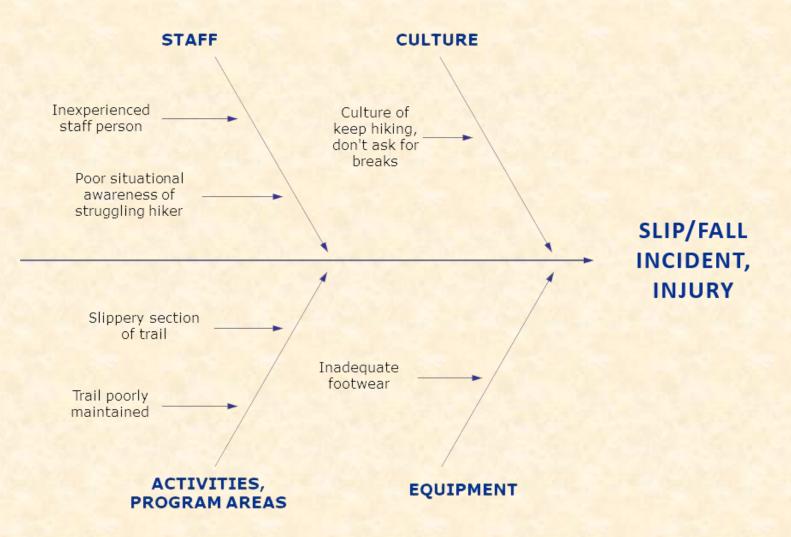
Image credit: HaSPA (Health and Safety Professionals Alliance).(2012). The Core Body of Knowledge for Generalist OHS Professionals. Tullamarine, VIC. Safety Institute of Australia.


Linear Models

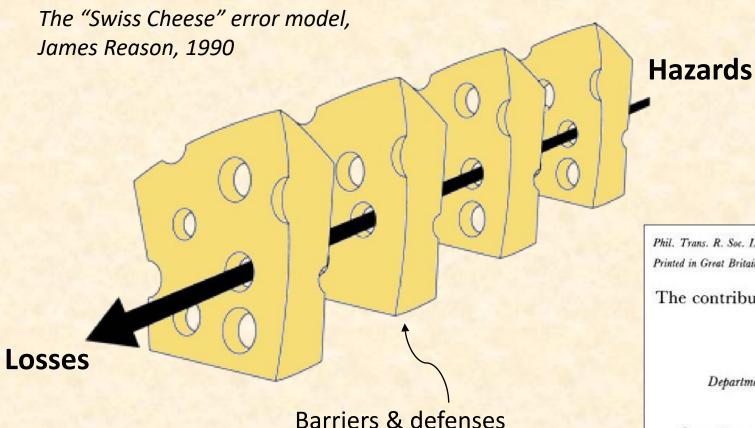
Domino model

Herbert Heinrich, *Industrial Accident Prevention*, 1931.

The injury is caused by the action of preceding factors.


The unsafe act and mechanical hazard constitute the central factor in the accident sequence. The removal of the central factor makes the action of preceding factors ineffective.

Linear Models



Fault tree analysis, Fishbone diagram

Epidemiological Model

Events + latent conditions

- Like an exposure + a pathogen reservoir
- Complex linear model
- First systems model

Phil. Trans. R. Soc. Lond. B. 327, 475–484 (1990) Printed in Great Britain

The contribution of latent human failures to the breakdown of complex systems

By J. REASON

Department of Psychology, University of Manchester, Manchester M13 9PL, U.K.

Several recent accidents in complex high-risk technologies had their primary origins in a variety of delayed-action human failures committed long before an emergency state could be recognized. These disasters were due to the adverse conjunction of a

475

Complex Systems Model

Characteristics of complex systems:

- Difficulty in achieving widely shared recognition that a problem even exists, and agreeing on a shared definition of the problem
- Difficulty identifying all the specific factors that influence the problem
- Limited or no influence or control over some causal elements of the problem
- Uncertainty about the impacts of specific interventions
- Incomplete information about the causes of the problem and the effectiveness of potential solutions
- A constantly shifting landscape where the nature of the problem itself and potential solutions are always changing

Examples of complex systems:

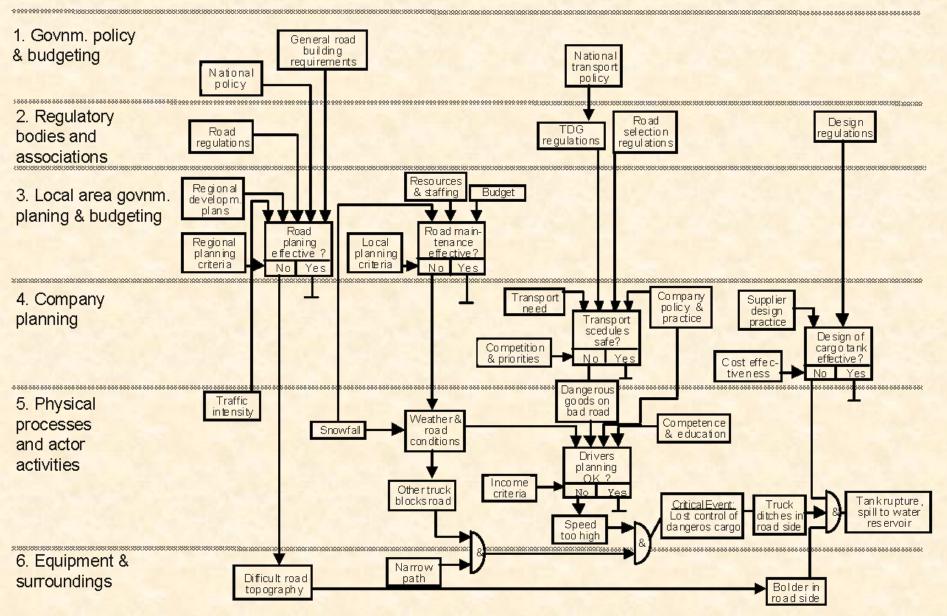
Global climate crisis

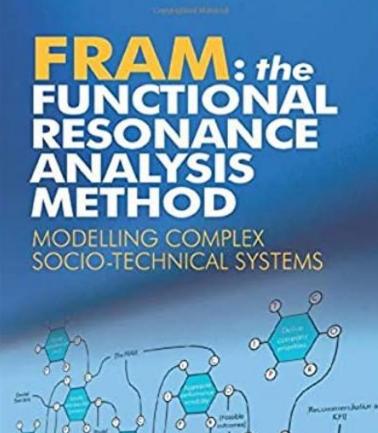
Inequity & exclusion

Outdoor recreation

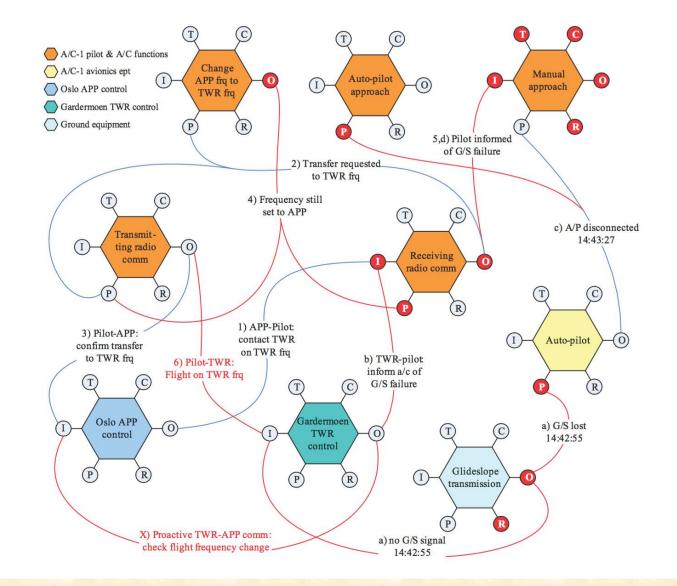
ferent

Safe

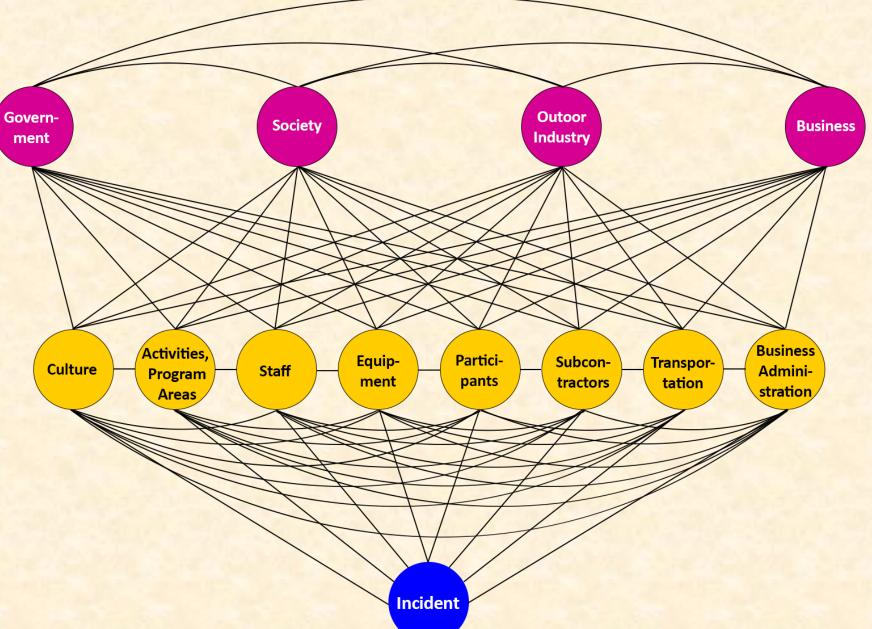


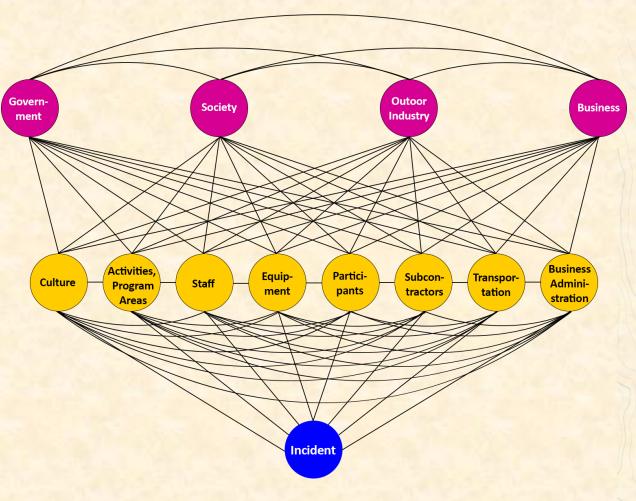

Threat and Error Management Control Change Cause Analysis Human Performance Enhancement System Accident Evolution and Barrier Function Management Oversight & Risk Tree Events and causal factors analysis/charting **Casualty Analysis Methodology for Maritime Operations** Prevention & amp; Recovery Information System for Monitoring and Analysis Particle Swarm Optimisation **Change Optimisation Algorithm** REAMORE methodology Software Hardware Environment Liveware 7 Multi-Incident Analysis Diagra **Causal Tree Method** Safety Function Analysis Analysi ot Cause Analysis iable Systems Model TapRoot Kee Health and Safety Guidance Fault Tree Analysis MESC-HFACF Sequentially Timed Events Plotting Human **Because Analysis** heese Mode **Complex Human Factor Analysis and Classification Framework Cognitive Reliability and Error Analysis Method** National Advisory Committee for Aeronautics Safety Through Organizational Learning Work accidents investigation technique **Functional Resonance Analysis Method Cause-Consequence Diagram Method Multilinear Events Sequencing Deviation Analysis/OARU**

Government	Passes laws
Regulators, Association	ons Create regulations
Company	Sets policies
Management	Makes operating plans
Staff	Performs work actions
Work	May involve hazardouts processes


AcciMap adapted from: Risk Management In a Dynamic Society: A Modelling Problem. Jens Rasmussen, Safety Science 27/2-3 (1997)

VIRISTAR




ERIK HOLLNAGEL

Risk Domains Model

Risk Domains Model

VIRISTAR

Manage risks in risk domains with policies, procedures, values and systems

Sidebar: Risk Assessments

Limitations of Risk Assessments

Probabilistic Risk Assessment (PRA) approach:

Risk	Probability	Magnitude	Treatment
1			
			-

		Magnitude		
		Slight	Moderate	Severe
ability	Unlikely Possible			
roba	Possible			
	Likely			

Limitations of Risk Assessments

- Typically assesses only direct, immediate risks from specific activities, locations or populations, such as
 - weather
 - traffic hazards
 - equipment failure
- Typically fails to account for underlying risk factors such as:
 - poor safety culture
 - financial pressures
 - deficits in training & documentation
 - lack of regulatory oversight
- Typically fails to account for human factors in error causation, e.g.
 - cognitive biases
 - cognitive shortcuts (heuristics)
- Fails to consider systems effects: how multiple risks interact in complex and unpredictable ways that to lead to incidents
- Ineffective as a comprehensive risk management tool or stand-alone indicator of good risk management

Improving Outcomes Through Applying Safety Science

America Outdoors Annual Conference, Nov 29-Dec 2, 2022 : Part I of II

Jeff Baierlein, Director, Viristar

viristar.com viristar.com/ao-safety-science

Viristar Risk Management Services

Improving Outcomes Through Applying Safety Science

America Outdoors Annual Conference, Nov 29-Dec 2, 2022 : Part II of II

Jeff Baierlein, Director, Viristar

viristar.com viristar.com/ao-safety-science

Viristar Risk Management Services

Outline of Session

Introductions

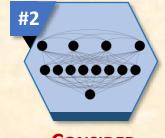
Presentation: application to outdoor programs

Presentation: safety science

Self-assessment

Discussion

Closure


Complex STS Theory: Application

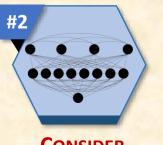
VIRISTAR

How do we apply complex socio-technical systems theory to outdoor programs?

RESILIENCE ENGINEERING

CONSIDER ALL RISK DOMAINS

MANAGEMENT INSTRUMENTS



SYSTEMS-INFORMED STRATEGIC PLANNING

RESILIENCE ENGINEERING

CONSIDER ALL RISK DOMAINS

MANAGEMENT INSTRUMENTS

SYSTEMS-INFORMED STRATEGIC PLANNING

Resilience engineering: create the conditions to withstand unanticipated problems

How?

- 1. Extra Capacity
- 2. Redundancy
- 3. Integrated Safety Culture
- 4. Psychological Resilience

CONSIDER AINS MANAGEMENT CONSIDER STRATEGIC RISK

Systems-Informed Strategic Planning VIRISTAR

Extra Capacity

- Backup staff available
- Backup equipment available
- Staff trained to operate at level higher than conditions normally require—e.g. Class IV paddler to lead Class III whitewater

Redundancy

- Multiple ways to identify emerging safety issues
- Multiple leaders per group
- Multiple leaders trained in first aid
- Participants trained in first aid, emergency response if leaders incapacitated
- Multiple emergency telecom devices
- Multiple emergency evac options

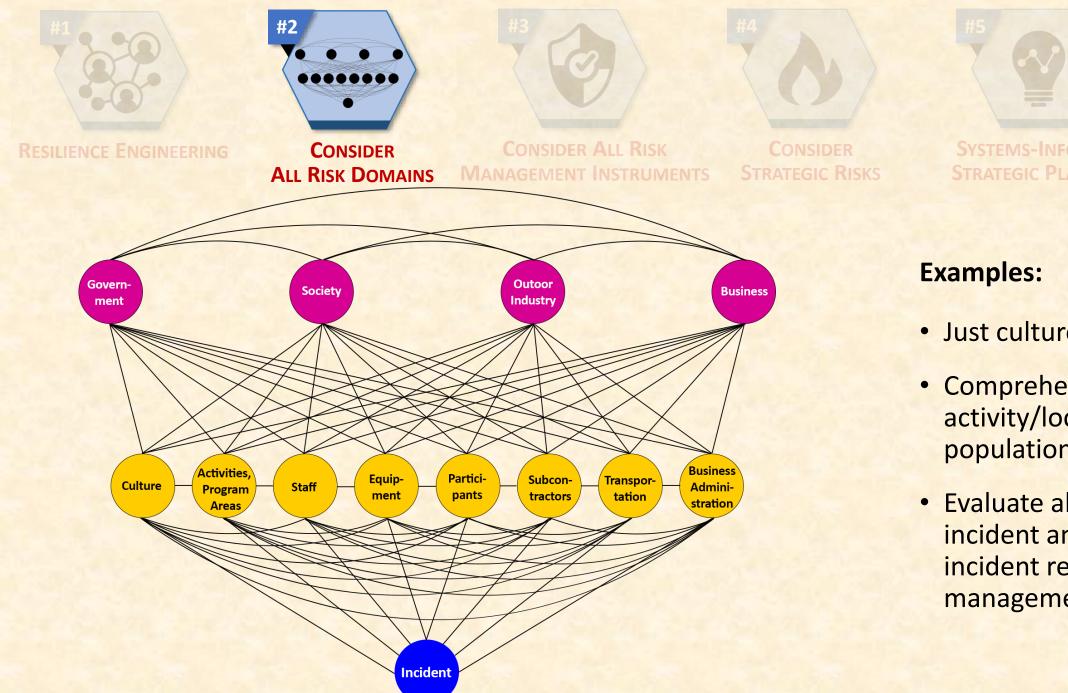
Integrated Safety Culture

 Balancing rules-based safety with allowing staff to use their judgement

Rules-based Safety

Focus: policies, procedures, processes
Executives anticipate risks, create control plan

• Compliance is expected


Managed Safety • Focus: activity leader judgment, capacity to adapt to unexpected risks

Taking initiative
Proactive, dynamic risk management

Psychological Resilience

• Recruiting, hiring, training and retaining staff who have positive attitude towards challenge

- Just culture
- Comprehensive new activity/location/ population planning
- Evaluate all domains in incident analysis, incident reviews, risk management reviews

Just Culture

When an error occurs:

- Don't automatically blame the person
- Look for the underlying systems that led to the error

Focus is on what went wrong, not who caused the problem

This empowers people to report incidents, and helps the organization resolve the underlying safety issues

RESILIENCE ENGINEERING

CONSIDER ALL RISK DOMAINS CONSIDER ALL RISK MANAGEMENT INSTRUMENTS

Systems-Informed Strategic Planning

Risk Transfer Incident

#3

Management

Incident Reporting

Risk Management Reviews

Seeing Systems

VIRISTAR

Incident Reviews

Media Relations

Risk

225

Management Committee

Documentation

O

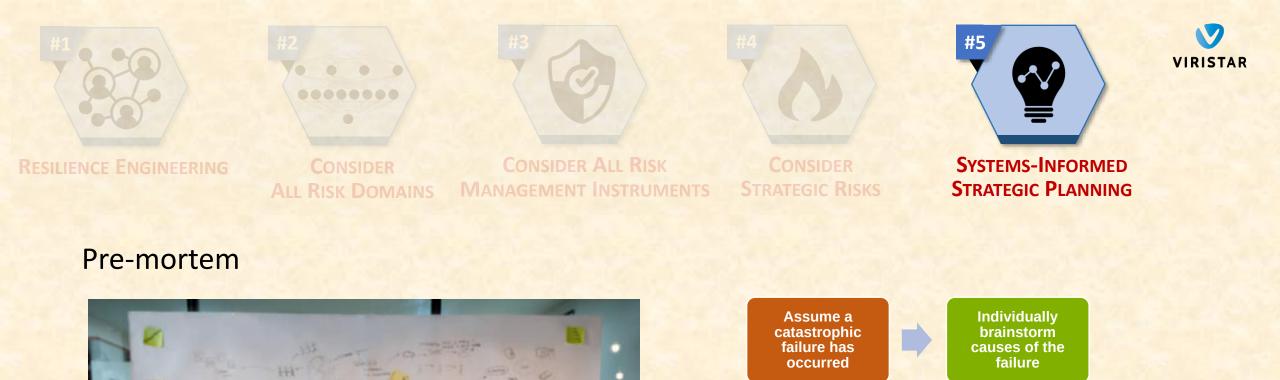
Medical Screening

Ş

Accreditation

Demographic, Market and Social Shifts

Climate Crisis



Geopolitical Conflict and Instability

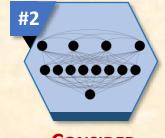
Legal trends & precedents

10

Review, assess, and prioritize causes

Combine causes into one list

Using this information, strengthen risk management systems


Complex STS Theory: Application

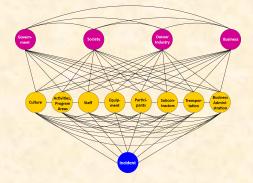
VIRISTAR

How do we apply complex socio-technical systems theory to outdoor programs?

RESILIENCE ENGINEERING

CONSIDER ALL RISK DOMAINS

MANAGEMENT INSTRUMENTS

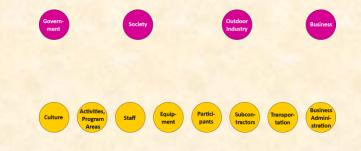

SYSTEMS-INFORMED STRATEGIC PLANNING

Self-Assessment

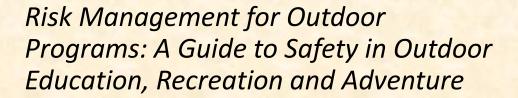
Complete the self-assessment on paper or at <u>viristar.com/ao-safety-science</u> to evaluate the extent to which your program employs risk management models, theories and systems-informed design in its risk management infrastructure:

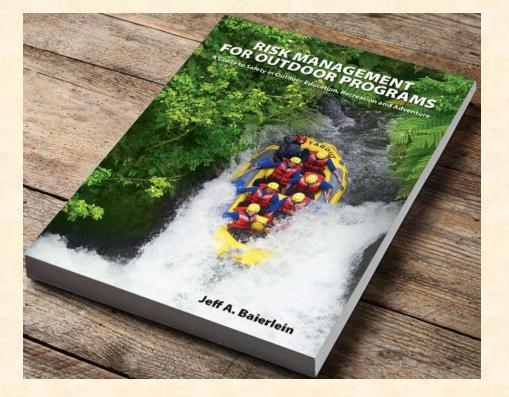
Uses current models of incident causation/prevention

Employs all applicable Risk Management Instruments


Employs complex STS theory in safety system design

Employs principles of resilience engineering


Identifies and manages specific risks in each risk domain

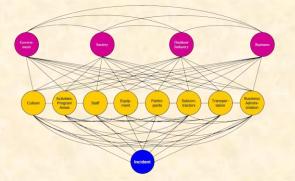

Addresses strategic risks

For More Information

Risk Management for Outdoor Programs 40 hour online training, held over 4 weeks <u>courses.viristar.com</u>

Principal Concepts

Sovt Policy & Budgeting Regulatory Bodies and Associations

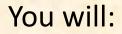

Regulators Association

models

VIRISTAR

Current models employ complex socio-technical systems theory

The Risk Domains Model is one current model



The Risk Domains model can be applied to outdoor programs via resilience engineering & other techniques

Many models of how to manage risk exist

Company Physical Process & Actor Activity It's important to use current

Outcomes

Understand risk management theories and models used across industries

Identify which models are most widely accepted as current best practice

VIRISTAR

Identify which model or models may be most useful for your context

Understand the extent to which your current risk management structure reflects best practice

Understand where to go to learn more about risk management for outdoor programs

Improving Outcomes Through Applying Safety Science

America Outdoors Annual Conference, Nov 29-Dec 2, 2022 : Part II of II

Jeff Baierlein, Director, Viristar

viristar.com viristar.com/ao-safety-science

Viristar Risk Management Services